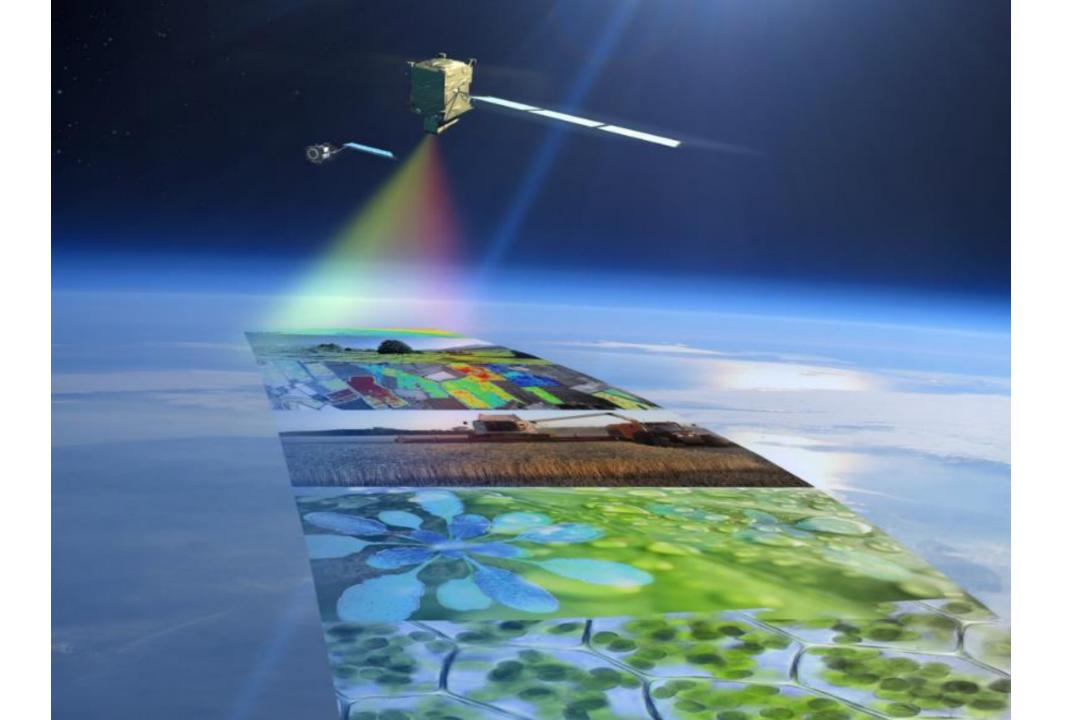
VERSAL Space Reference Design

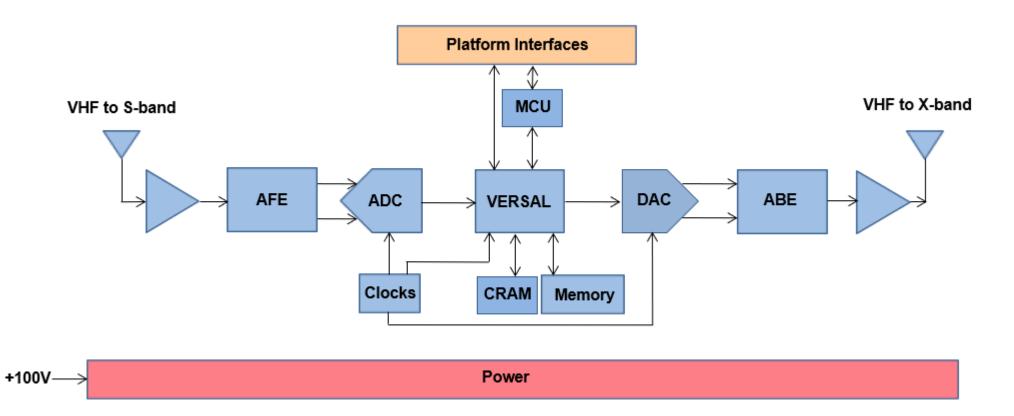
8th March 2023

Dr. Rajan Bedi CEO Spacechips rajan@spacechipsllc.com


The Global Space-Electronics Company www.spacechipsllc.com

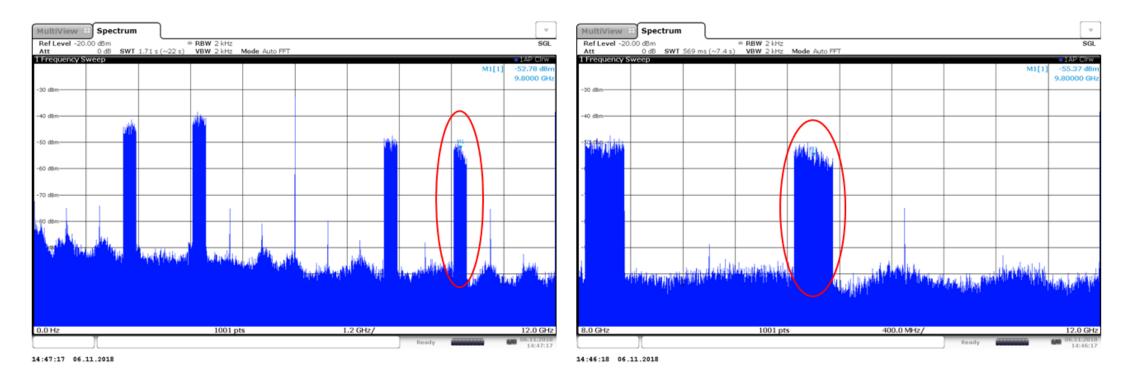
Winner of European Start-Up of 2017 and European High-Reliability Product of 2016, 17 & 18

Forest Fire Detection



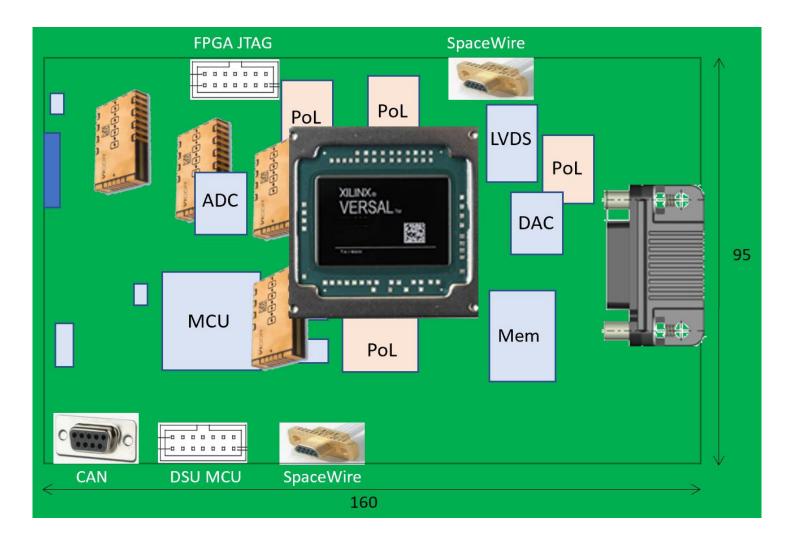
Space Reference Design Objectives

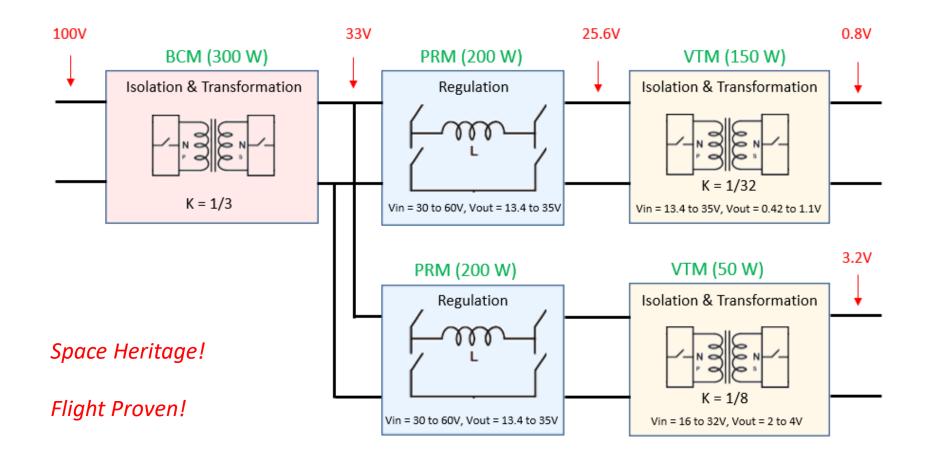
- Xilinx's Versal ACAP represents a timely, synergistic and potentially lucrative opportunity to enable in-orbit AI and ML.
- Spacechips is bringing to market an EM Versal Space Reference Design (XCVC1902-1MSEVSVA2197) later this year to allow you to prototype and de-risk in-orbit AI and ML. Populated with EM-grade versions of space-grade parts!
- Spacechips is bringing to orbit a flight-qualified version next year which you can launch to implement AI and ML in-orbit. Populated with space-qualified components, delivered with EICD, an Instruction Manual and functional HDL to prove operation of the signal-chain blocks no application code!


Proposed Architecture

Representative transponder that allows RF traffic to be input, digitised, processed and intelligent analytics extracted in real-time.

Data can be stored using the 1 Tb, non-volatile on-board memory (DDR3-speed) and exported to external subsystems using a variety of space-industry interfaces such as SpaceWire, SpaceFibre, SPI and CAN.


Direct RF Conversion


12-bit ADC, Fs = 1.5 GSPS, BW = 3 GHz to digitise up to S-band (Ku/K-band options can also be offered) 12-bit DAC, Fs = 8 GSPS, BW = 7.5 GHz (K-band options can also be offered)

Default build offers fixed sampling rates, options available to allow sampling rate to be changed and reprogrammed in-orbit

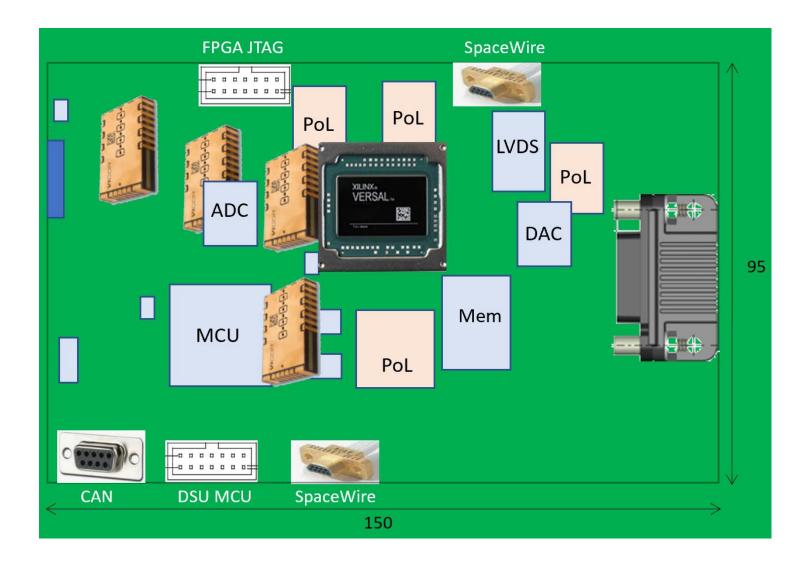
Implementation 1 : XCVC1902-1MSEVSVA2197

Factorised Power Architecture

Versal Power Distribution

Domain/ Sequence no.	Rail Name	Rails	Voltage	DC Spec.	AC Spec.	Current (A)	Power (W)	Step	Comment
LPD/1 PL/1 PMC/1 System/1	PS_IO (Digital)	VCCO_500/1/2/3, VCCO_HDIO, VCCO_XPIO	1.8V – 3.3V (HDIO/PSIO) 1.8V – 3.3V (VCCO_50X) 1V – 1.5V (XPIO)	±1%	±5% (XPIO) (HDIO/PSIO/XPIO)*	0.100 - 3	10	100%	*1.8V, 2.5V at ±5%, and 3.3V at +3/–5% VCCO supplies can be combined if using same Voltage VCCOs must be powered on first in relevant domain
System/2	0V80_SOC _IO (Digital)	VCC_SOC, VCC_IO	0.8V	±1%	±17m∨	3.5	3	33%	
PMC/2	0V80_PMC (Digital)	VCC_PMC	0.8V	±1%	±17mV	0.350	0.3	33%	0.88V for PS Overdrive
System/3	1V5_VCCAUX (Digital)	VCCAUX	1.5V	±1%	±2%	4.2	6.3	33%	
LPD/2	0V80_PSLP (Digital)	VCC_PSLP	0.8V	±1%	±17mV	0.300	.2	33%	0.88V for PS Overdrive
FPD/1	0V80_PSFP (Digital)	VCC_PSFP	0.8V	±1%	±17mV	1.5	1.2	70%	0.88V for PS Overdrive
PL/2	0V80_RAM (Digital)	VCCINT, VCC_RAM	0.8V	±1%	±17m∨	135	108	33%	200A/us Slew Rate
PMC/3	1V5 (Digital)	VCCAUX_SMON, VCCAUX_PMC	1.5V	±1%	±2%	0.350	.5	100%	
PL/3	0V88 (Analog)	GTAVCC	V88.0	±2%	10m∨pp	1.7	1.5	70%	Ripple is steady state, total tolerance is +/-3%. Ripple at FPGA pins, see <u>UG578</u>
PL/4	1V5 (Analog)	GTAVCCAUX	1.5V	±2%	10mVpp	0.100	.2	70%	Ripple is steady state, total tolerance is +/-3%. Ripple at FPGA pins, see <u>UG578</u>
PL/5	1V2 (Analog)	GTAVTT	1.2V	±2%	10m∨pp o	2.8	3.3	70%	Ripple is steady state, total tolerance is +/-3%. Ripple at FPGA pins, see <u>UG578</u>

XPE Versal Power Distribution


PE Quick Estimate - XCVC1902VSVA2197-1LI	×						
XCVC1902VSVA2197-1LI							
Processing System	AI Engine						
Quantity Clock (MHz) Load (%) Dual R5 0 500 100	Interface Cores Load (%) PL Stream 200 100						
OCM 0	NoC Stream 200 100						
тсм 0							
A72 0 500 100 Dual_GEM 200 100	NoC Bandwidth Data Path (MBps) PS->DDRC						
USB 200 200	PS->PL V						
With the second secon	IO/Transceiver Interfaces Input Output Inout Mb/s HDIO 0 0 0						
FF 1799680 + 100.0 300 12.5	XPIO 0 0 0						
BRAM 1934 • 100.0 300 12.5	Memory DDR3 Data 64 1866						
URAM 463 • 100.0 300 12.5	Channels Line Rate (Gbps)						
DSP 1968 • 100.0 300 12.5	GTY 32 25						
	OK Cancel						

- When the XCVC1902-1MSEVSVA2197 is fully implemented, its 0.8 V core voltage will draw around 140 A with a total device dissipation of 130 W.
- 57% of the overall power is consumed by the AI engines
- 13% by logic
- 10% by the high-speed transceivers
- 10% by clocking and PLLs
- 5% by processors and the remainder by memory and interfaces

Conclusion

- Spacechips is bringing to market an EM Versal Space Reference Design (XCVC1902-1MSEVSVA2197) later this year to allow you to prototype and de-risk in-orbit AI and ML.
 - Populated with EM-grade versions of space-grade parts and delivered as a tested, populated 2U PCB with or without a housing!
- Spacechips will bring to market a flight-qualified version next year which you can launch to implement AI and ML in-orbit. Populated with space-qualified components, delivered as a 2U housed subsystem, with EICD, an Instruction Manual and functional HDL to prove operation of the signal-chain blocks – no application code!
- Orders for the XCVC1902-1MSEVSVA2197 EM Versal Space Reference Design currently being taken includes an EICD, an Instruction Manual and functional HDL to prove operation of the signal-chain blocks no application code!
- In 2024, Spacechips will consider a lower-power EM and FM versions of the Versal Space Reference Design baselining the smaller XCVE2302-1MLISFVA784 ACAP.

Implementation 2 : XCVE2302-1MLISFVA784

Conclusion

- Spacechips is bringing to market an EM Versal Space Reference Design (XCVC1902-1MSEVSVA2197) later this year to allow you to prototype and de-risk in-orbit AI and ML. Populated with EM-grade versions of space-grade parts and delivered as a tested, populated 2U PCB with or without a housing!
- Spacechips will bring to market a flight-qualified version next year which you can launch to implement AI and ML in-orbit. Populated with space-qualified components, delivered as a 2U housed subsystem, with EICD, an Instruction Manual and functional HDL to prove operation of the signal-chain blocks – no application code!
- In 2024, Spacechips will consider a lower-power EM and FM versions of the Versal Space Reference Design baselining the smaller XCVE2302-1MLISFVA784 ACAP.
- Orders for the XCVC1902-1MSEVSVA2197 EM Versal Space Reference Design currently being taken includes an EICD, an Instruction Manual and functional HDL to prove operation of the signal-chain blocks no application code!
- Feedback is there something on the Versal Space Reference Design which is currently missing but you would like to see?

Space Electronics

Space-Systems Engineering

How to Select & Use COTS Components

PCB Design for Space Applications

Testing Satellite Payloads

Mission Design, Frequency Planning & Link-Budget Analyses

In-Orbit AI and Machine Learning for On-Board Processing

Satellite Applications, Remote Sensing and Geospatial Processing VERSAL Space Reference Design

8th March 2023

Dr. Rajan Bedi CEO Spacechips rajan@spacechipsllc.com

The Global Space-Electronics Company www.spacechipsllc.com

Winner of European Start-Up of 2017 and European High-Reliability Product of 2016, 17 & 18